安科瑞电气股份有限公司
安科瑞电气股份有限公司 入驻平台 第14
  • 资质核验已核验企业营业执照
  • 资质核验已核验企业营业执照
当前位置:
首页>
公司新闻>
浅谈餐饮业大气污染物排放特征及对策
浅谈餐饮业大气污染物排放特征及对策

发布时间:2021-08-02 15:24:31

摘 要餐饮业是中国大型城市大气环境污染源之一。为了解餐饮业大气污染物的产生能力,本研究以北京为研究对象,选取41家不同菜系的餐饮企业,现场实地检测了净化设备前端的油烟、颗粒物和非甲烷总烃( NMHC) 的产生浓度水平结果表明,净化前油烟、颗粒物和 NMHC的初始平均浓度约为1.93、6.6 和10.9 mg·m-3 提出了一种基于工作日与非工作日的估算污染物排放总量的计算方法并基于北京市餐饮企业数量和本研究测得的排放因子,初步估算了2019年全市餐饮源主要污染物的初始产生总量,油烟、颗粒物和NMHC的年排放总量分别5512、18849和6169 t川湘菜、烧烤、烤鸭与家常菜产生的油烟与颗粒物浓度的 Pearson系数均 > 0. 6,具有强相关性其中川湘菜和烤鸭排放的Pearson系数均 > 0. 8,呈现很强相关性。

关键词餐饮业;油烟颗粒物 非甲烷总烃( NMHC);餐饮油烟监测云平台;安科瑞

0.前言

餐饮业排放的主要污染物为食物加工过程中产生的油烟、颗粒物、非甲烷总烃( NMHC) 以及烹饪使用的煤、天气的燃烧产物餐饮业废气对环境空气质量有一定影响,主要表现在液态油烟与空气中水分结合形成气凝胶,气凝胶在大气中长时间悬浮,会导致大气PM2.5含量增加,部分挥发性VOCs在大气中经过复杂地反应会生成可以长时间悬浮的二次颗粒物,进一步增加大气PM2.5含量有研究表明,餐饮业排放以PM2.5为主,其排放的颗粒物约占北京大气PM2.5浓度的7.5%~21.2%,是北京城区大气污染的来源之一且随着经济平稳增长,北京市人口增长,餐饮业消费大大提升北京市商务局统计数据显示,截至 2018年12月,北京地区共有餐饮企业5.95万户,同比增长7.7%,尤其在城区,高密度分布的餐饮企业油烟排放,是造成局部空气污染的一大原因餐饮业排放的油烟成分复杂,并对人体呼吸道产生不利影响,大量吸入后有致癌风险

1. 料材与方法

1.1 设备与材料

设备: QC-2大气采样仪大气烟尘气采样仪OIL-460型红外测油仪GC8600 型气相色谱甲烷柱为以GDX-502高分子多孔微球为填料的色谱柱,长3m,内径3 mm总烃柱为以硅烷化玻璃微珠为填料的色谱柱,柱长1m,内径 3mm系统载气为氮气( > 99.9*** ) ,氢气由氢气发生器提供电子天平

材料: 聚四氟乙烯杯不锈钢油烟滤筒特氟龙气袋颗粒物滤膜四氯化碳

1.2 样品采集与分析

根据城市居民外出就餐习惯,选午间11: 30~13: 30和晚间17: 30~19: 30(冬季晚餐高峰时间延后1h) 的用餐高峰时段对选取的41家餐饮企业进行样品采集,其中川湘菜9家、烤鸭10家、烧烤5家和家常菜17家 

样品采集参考《饮食业油烟排放标准试行》 (GB18483-2001) 、《餐饮业颗粒物的测定手工称重法》( DB11T1485-2017) 和《固定污染源废气挥发性气体的采样气袋法》( HJ732-2014) 规定的标准方法采集断面位于油烟净化设备前端的平直烟道油烟每组5个样品,每个样品采集10min,颗粒物每组1个样品,采集时间45min,非甲烷总烃每组1个样品,采集时间30min

 样品在规定期内进行分析,分析方法参考 《饮食业油烟排放标准试行》(GB 18483-2001) 、《餐饮业颗粒物的测定手工称重法》(DB11T 1485-2017) 和《固定污染源总烃、甲烷和非甲烷的测定气相色谱法》( HJ38-2017)本研究采用《固定污染源总烃、甲烷和非甲烷的测定气相色谱法》(HJ38- 2017) 对烟气中VOCs浓度进行分析,故VOCs浓度以NMHC计


2. 结果与讨论

2.1 油烟与颗粒物排放情况

41家餐饮企业的净化前油烟与颗粒物排放情况见图 1(a) ,油烟基准排放浓度范围为0.14 ~ 6.25 mg·m- 3 ,平均排放浓度1.93 mg·m- 3 从中可知,油烟基准排放浓度< 1. 0 mg·m- 3 ,即满足《餐饮业大气污染物排放标准》( DB11/1488-2018)油烟排放限值要求的有13家企业,占比31.71%,这些企业不需加装净化设备即可满足达标排放油烟基准排放浓度 ≥1.0 mg·m- 3的餐饮企业共28家,占比68.29%,其中油烟基准排放浓度≥2.0 mg·m - 3 ,即超标2倍的企业有16家,占调查总量的39.02%颗粒物排放情况见图 1( b) 。


 

2.2 颗粒物与油烟排放浓度相关性分析

***油烟与颗粒物的排放浓度具有一定相关性,分析结果见图 2,统计结果见表 1

本研究分别对全部餐饮企业与不同菜系间餐饮企业的油烟与颗粒物浓度进行相关性分析,结果表明油烟与颗粒物之间存在强相关性,且不同菜系间存在差异家常菜和烧烤排放的油烟与颗粒物表现为强相关性,而烤鸭和川湘菜的Pearson系数分别为0.8和0.9,表现出了很强的相关性,与孙鹏等对河南省郑州市具有代表性餐饮企业排放油烟和颗粒物之间具有很高线性关系的研究结论相符但是,有研究表明烤鸭排放的油烟与颗粒物之间相关性不好,与本研究的结论不同,可能由于本研究样本中烤鸭均为电烤炉烹饪,与传统果木烤鸭的油烟和颗粒物排放水平不同、样品受采集条件和餐饮企业工况等因素影响


 

2.3 NMHC排放情况

NMHC排放情况见图 3,NAMC 的基准排放浓度范围1.67 ~ 37.4 mg·m- 3 ,平均排放浓度为10. 8 mg·m- 3 NMAC 排放浓度 < 10 mg·m- 3 ,满足 DB 11 /1488-2018油烟排放限值要求的有22家企业,占比52. 63% NMAC初始浓度≥10 mg·m- 3 的餐饮企业共17家,占比42.5%,其中颗粒物基准浓度 ≥20 mg·m- 3 有6家,占比15% DB11 /1488-2018 的编制说明中对100家餐饮企业的测试结果为7.50 mg·m - 3 ,与本研究的结果相近55%的餐饮企业NMHC的初始排放浓度符合标准,无需进一步治理,约有一半的企业需要安装VOCs治理设施,其中约有15%的餐饮企业需要安装净化效***于60% 的VOC治理设施是否推广普及针对VOCs的净设备有待商榷



2.4 污染物排放总量估算

分别统计了41家餐饮企业的标况排放风量与平均基准灶头数如图4所示,各餐饮企业在不同标况风量的区间内和不同折算灶头数量下呈正态分布趋势,标况风量平均值10 000 m3 ·h- 1,折算灶头数量平均值为5个

经实地调查发现,工作日( 250 d·a- 1 ) 餐饮企业作业时间集中12: 00 ~13: 00与18: 00 ~19: 00,主营项目为外卖非工作日( 115 d·a- 1 ) 堂食顾客较多,兼具大量外卖,作业时间主要集中在11: 30~13: 30与17: 30~19: 30,即工作日日均作业时长约2 h,非工作日约4h按商务部统计的2018年北京市餐饮业市场主体5. 95万户,估算2019年工作日与非工作日北京市餐饮源油烟、颗粒物和NMHC的排放总量,并计算2019年全年排放总量分别为5512、18849和6169t. 结果见表 2


3.安科瑞AcrelCloud3500餐饮油烟监测云平台

3.1 平台结构

平台GIS地图采集餐饮油烟处理设备运行状态和油烟排放的浓度数据自动对超标排放及异常企业进行提示预警,监管部门可迅速进行处理,督促餐饮企业整改设备,并定期清洗、维护,实现减排环保,不扰民等目的。现场安装监测终端,持续监测油烟净化器的工作状态,包括设备运行的电流、电压、功率、耗电量等等,同时结合排烟口的挥发性物质、颗粒物浓度等进行对比分析,一旦排放超标,系统会发出异常信号。


 

■ 油烟监测设备用来监测油烟、颗粒物、NmHc等数据

■ 净化器和风机配合对油烟进行净化处理,同时对净化设备的电流、电压进行监测

■ 设备通过4G网络将采集的数据上传至远程云端服务器

3.2平台主要功能

(1)在线监测

对油烟排污数据的监测,包括油烟排放浓度,颗粒物,NmHc等数值采集监测;同时对监控风机和净化器的启停状态、运行数据进行监测。


 

(2)告警数据监测

系统根据采集的油烟数值大小,产生对应的排放超标告警;对净化器的运行数据分析,上传净化设备对应的运行、停机、故障等告警事件。

(3)数据分析

运行时长分析,离线分析;告警占比、排名分析;历史数据统计等。


 

(4)隐患管理

系统对采集的告警数据分析,产生对应的隐患记录,派发、处理隐患,及时处理告警,形成闭环。


 

(5)统计分析

包括时长分析、超标分析、历史数据、分析报告等模块。



 

(6)基础数据维护

个人信息、权限维护,企业信息录入,对应测点信息录入等。

(7)数据服务

数据采集,短信提醒,数据存储和解析。

3.3 油烟监测主机

油烟监控主机是现场的管理设备,实时采集油烟浓度探测器和工况传感器的信号,进行数据处理,通过有线或无线网络通讯将数据传输到服务器平台。同时,对本地数据进行存储,监控现场设备状态,提供人机操作界面。


 


4.结论

(1) 选取的41家餐饮企业涵盖了4种典型菜系,具有一定的代表性北京市餐饮源产生污染物能力较强,油烟,颗粒物和非甲烷总烃的基准平均浓度分别为1.93、6.6与10.9 mg·m- 3 ,均超过了北京市对餐饮企业排放的地方标准,对餐饮企业加装净化器十分有必要 

(2) 餐饮源产生的油烟与颗粒物之间存在较强的相关性,在对餐饮源排放污染物的监督管理过程中可以只对其中一项污染物进行检测,用于评估此餐饮企业的排放能力,从而节省检测费用

【参考文献】

[1]刘芃岩,马傲娟,邱鹏,等.保定市餐饮源排放 PM2.5中污染物特征及来源分析[J].环境化学,2019,38( 4) : 770- 776.

[2]刘欣然.北京大气气溶胶中烃类污染物的特征研究[D].北京: 中国科学院研究 生院 (大气物理研究所)2008.

[3]蒋燕,尹元畅,王波,等.成都市川菜烹饪油烟中VOCs排放特征及其对大气环境的影响[J].环境化学,2014,33( 11) : 2005-2006.

4孙成一,白画画,陈雪,翟翼飞,高启天,何万清,聂磊,石爱军,李国傲.北京餐饮业大气污染物排放特征.J环境科学.2020.

5安科瑞AcrelCloud-3500餐饮油烟监测云平台.2020.05版.


免责声明:
本页面所展现的公司信息、产品信息及其他相关信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息来源商铺的所属发布者完全负责,供应商网对此不承担任何保证责任。
友情提醒:
建议您在购买相关产品前务必确认供应商资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防欺诈行为。
 
建议您在搜索产品时,优先选择带有标识的会员,该为供应商网VIP会员标识,信誉度更高。

版权所有 供应商网(www.gys.cn)

京ICP备2023035610号-2

安科瑞电气股份有限公司 地址:上海 上海 嘉定区 上海嘉定区育绿路253号